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Abstract—Regularization methodologies are an integral
part in dealing with ill-posedness of inverse problem in elec-
trocardiograhy, expressed in terms of potential distribution
on the epicardium. In order to systematically evaluate var-
ious regularization techniques under controlled conditions,
we employed progressively more complex idealized source
models (from single dipole to triplet of dipoles) to calculate
body surface potentials, which served as an input data to
the inverse problem. In total, we examined, 13 different
regularization techniques and found that non-quadratic
methods (total variation algorithms) and first-order and
second-order Tikhonov regularizations outperformed other
methodologies.

I. INTRODUCTION

It has been shown that there is an infinite number
of internal electrical heart sources that can produce the
same potential distribution on the body surface [1], [2].
Therefore, to solve such ill-posed inverse problem, an
equivalent source model has to be presupposed. Some
of the models, e.g., single dipole or single quadrupole,
are rather crude approximations of the entire heart’s
electrical activity, while other models, e.g., epicardial
potentials, can be actually measured. The inverse solution
that employs the potential distribution on the epicardial
surface as an equivalent source model or electrocardio-
graphic imaging (ECGI) [3] has been widely studied in
electrocardiography due to its inherent ill-posedness [4]–
[7]. A plethora of regularization techniques have been
applied to gauge wildly oscillating inverse solutions,
however, there is a growing need to compare, structure,
and unify those diversified regularization methods. In
particular, such a comparison requires the use of the
same volume conductor and the same cardiac source
models in order to eliminate other sources of variation
in results. In this study, we employed the same volume
conductor model as in a related study [8] to systematically
evaluate the performance of 13 different regularization
techniques using progressively more complex idealized
source models (from single dipole to triplet of dipoles).

II. METHODS

A. Problem formulation
The equivalent potential distribution on the epicardial

surface can be found from a known potential distribution
on the torso surface - which can be in principle obtained
using multichannel ECG devices [9] - by solving gener-
alized Laplace’s equation subjected to Cauchy boundary
conditions [4]–[7]. Such a boundary-value problem must
be in an arbitrarily shaped volume conductor approxi-
mated on a discretized solution domain as the system

of linear equations. For the homogeneous and isotropic
model of the human torso, this can be achieved by means
of the boundary element method (BEM), which relates
the potentials at the torso nodes (expressed as an m-
dimensional vector ΦB) to the potentials at the epicardial
nodes (expressed as an n-dimensional vector ΦE)

ΦB = AΦE (1)

where A is the transfer coefficient matrix (m× n) and
n < m. The transfer coefficient matrix depends entirely
on the geometric integrands which can be calculated
analytically [10], [11]. In principle, the epicardial
potential distribution could be simply found in the
form of a pseudo inverse; however, the matrix A is
ill-conditioned, i.e., its singular values are limiting to
zero with particular gap of separation in the singular
value spectrum, which yields an unstable solution. A
number of approaches have been developed to control
the wild oscillations of the solution and the ones we
have used and described in more details in the related
study [8] are divided into three groups

1) Tikhonov regularizations: zero order (ZOT) [12],
[13], first order (FOT) [7], [14] and second order
(SOT) [13],

2) iterative techniques: truncated singular value de-
composition [15] (zero order (ZTSVD), first order
(FTSVD), and second order (STSVD)), conjugate
gradient [16] (zero order (ZCG), first order (FCG),
and second order (SCG)), ν-method (NU) [15], and
MINRES method [16],

3) non-quadratic techniques [7], [17]: total variation
(FTV), and total variation with Laplacian (STV).

We used geometry based on the torso shaped outer bound-
ary, defined with m=771 nodes, and an internal, barrel-
shaped cage with n=602 electrodes, which surrounded all
sources (surrogate for the epicardial surface) [8].

B. Selection of sources
We created a cylindrical source space, consisted of

744 dipoles in 248 positions, which were arranged in
8 axial planes 10 mm apart along the polar z-axis, see
Fig. 1. There were three perpendicular dipoles in each
position: normal (radial, ~pρ ) and tangential (along the
polar angle, ~pϕ ) to the cage side surface, and alongside
the polar axis (~pz). In the first and second source (axial)
planes there were 7 source positions (Fig. 1c), one in the
center and 6 arranged along a concentric circle with a
radius of 10 mm (nodes of hexagon with side 10 mm).
The center of the bottom plane was at (-16, 45, 230)
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mm in the Cartesian coordinate system of the torso-cage
model. In the next two source planes (Fig. 1d), there were
19 positions on each plane, 7 as in the first and second
planes and 12 arranged on an additional concentric circle
with a radius of 20 mm (nodes of a dodecagon with side
10 mm). In the next two source planes, there were 37
positions on each plane (Fig. 1e), 19 as in the previous
two planes, and 18 on an additional concentric circle
with a radius of 30 mm (equivalent to the nodes of an
octadecagon with a side length of 10 mm). In the last
two source planes, there were 61 positions on each plane
(Fig. 1f), 37 as in the previous two planes and 24 on
an additional concentric circle with a radius of 40 mm
(nodes of tetracosagon with sides of 10 mm).

From the above source space, we selected three
different idealized source models:

1) single dipoles at 16 different locations and 3 different
orientations (in total 48 combinations),

2) pairs of dipoles at 324 combinations, and
3) triplets of dipoles at 24 different combinations.

For single dipole source, we selected sources in four
planes at levels (zi in mm): bottom plane (z0 = 230, Fig.
1c), two planes in the middle (z1 = 260, Fig. 1d and
z2 = 270, Fig. 1e), and upper plane (z3 = 300, Fig. 1f).
On each plane, we selected four positions (in cylindrical
coordinates ρ – radial distance, ϕ - polar angle, and z –
height), one in the center (polar axis) and three on the
outermost circle of a given plane (ρ0=10, ρ1=20, ρ2=30,
ρ3=40 mm) at polar angles ϕ=-180◦, -120◦ and -60◦, see
Figs. 2a–c.

a) b)

c) d)

e) f)

Fig. 1. Cross-sectional views of dipole positions denoted by a) Anterior,
b) Sagittal and (c through f), Axial planes at different z levels. Torso and
cage borders are displayed with black and magenta colors, respectively.
On each plane, sources within x or y or z levels ± tolerance are
displayed. The polar axis of the cylindrical cage is at x=-16 mm and
y=45 mm.

For dual dipole sources, we selected single dipole
sources in three planes at levels (zi): two planes in the
middle (z1 = 260 and z2 = 270), and in the upper plane
(z3 = 300), see Figs. 2d–f. Note, that we kept the same
notation of planes as in the case of single dipole sources.
On each plane, we selected only dipoles in the outermost
circle with radial distances ρ1, ρ2 and ρ3, respectively.
We put the first single dipole on the right side (polar
angle ϕ=-180◦). The other dipoles are then positioned in
angular steps of ∆ϕi in the anterior part

ϕ =−180◦+∆ϕi, −180◦+2∆ϕi, . . . ,0◦ ,

where ∆ϕ1=30◦, ∆ϕ2=20◦ and ∆ϕ3=15◦, with 6, 9 and 12
additional dipole positions in the three selected planes, re-
spectively. We combined dipoles along the same direction
(3 parallel (~pρ ,~pρ), (~pϕ ,~pϕ), (~pz,~pz) and 3 anti-parallel
(~pρ ,−~pρ), (~pϕ ,−~pϕ), (~pz,−~pz) combinations), as well
as dipoles 6 orthogonal combinations ( (~pρ ,~pϕ), (~pρ ,~pz),
(~pϕ ,~pρ), (~pϕ ,~pz), (~pz,~pρ), (~pz,~pϕ)).

For 3-dipoles sources, we selected single dipole
source positions that approximately form nodes of
equilateral triangle. We formed six different triangles,
which are named according to either an approximate
cross-sectional plane where triangle nodes are positioned
(Anterior and Sagittal) or a part of the cage (torso)
where most nodes are positioned (Right) with added
approximated distance between dipoles (side of a given
triangle) in mm. We selected six triangles. The first node
of Anterior–80 (Fig. 3a) and Sagittal–80 triangles is
positioned in the center of the bottom plane (z0 = 230).

a) d)

b) e)

c) f)

Fig. 2. Selected positions for single dipoles in different planes: a)
z3=300 mm (radial dipoles ~pρ are displayed), b) z2=270 mm (dipoles
along the polar angle ~pϕ are displayed) and c) z2=260 mm (axial ~pz
dipoles are displayed). Labels denote dipole numbers in 744–dipoles
source space (Fig. 1). Selected positions of dual dipole sources in planes:
d) z3=300 mm, e) z2=270 mm and f) z2=260 mm. Dipoles normal to
the cage side (~pρ ) surface are displayed.
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a) b)

Fig. 3. Positions of triple dipole sources in a) Anterior–80 (radial ~pρ

are displayed) and b) Sagittal–60 (axial ~pz are displayed) triangles.

The other two nodes are positioned in the outermost circle
(ρ3=40 mm) of the upper source plane (z3 = 300), with
polar angles ϕ=(-180◦, 0◦) and (-90◦,90◦), respectively,
see Fig. 3. Similar scheme was used also for constructing
Anterior–60 and Sagittal–60 (Fig. 3b) triangles, where
the other two nodes are positioned in the outermost circle
(ρ=30 mm) of the source plane at z=280 mm. The first
node of the Right–57 triangle is positioned in the center
of the source plane at z=260 mm and the other two
nodes are positioned in the outermost circle of the upper
source plane at z3, with polar angles ϕ=(-180◦, -90◦).
The first node of the Right–42 triangle is positioned in
the center of plane at z=250 mm and the other two nodes
are positioned in the outermost circle of the source plane
at z=280 mm, with polar angles ϕ=(-180◦, -100◦). For
each triangle, we formed four 3-dipoles sources

1) normal with dipoles (−~pz,~pρ ,~pρ )
2) tangential with dipoles (~pρ ,−~pz,~pz)
3) along the polar angle (~pϕ ,~pϕ ,~pϕ ), which are also all

tangential to the cage side surface
4) axial with all dipoles along polar axis (~pz,~pz,~pz).

C. Data simulation and evaluation
For all selected single, dual and triple dipole sources,

we simulated data at 602 leads of the cylindrical cage and
at 771 nodes on the torso surface using boundary element
method (BEM) [18]. In order to test the inverse solution,
we added to the BEM calculated potential maps on a body
(torso) surface 10 different random noise distributions
at level (S/N=40 dB), where S/N = 20log10

RMS(signal)
RMS(noise) .

For each simulated data with added noise on the torso
surface, we applied all 13 regularization techniques from
section II-A to reconstruct the potential distribution on
the cage surface. As a measure of reconstruction accu-
racy, we used the relative error (normalized RMS error)
RE = ||Φr

EΦm
E ||2/||Φm

E ||2, and the correlation coefficient,
CC = Φr

E ·Φm
E /||Φr

E||2||Φm
E ||2, where Φm

E are the directly-
computed cylindrical-cage potentials and Φr

E are the re-
constructed potentials. Since there are no specific clinical
thresholds for RR and CC, we also compared qualitative
features of both simulated and inversely computed poten-
tial maps, (e.g., areas of negative potentials and positions
of extrema).

III. RESULTS

Table I summarizes average reconstruction results for
single, dual and triple dipole models with 40-dB input
noise. Results show that NU and MINRES are the worst
for all source configurations. Zero order methods (ZOT,
ZCG, ZSTSVD) are also much worse than their first and
second order equivalents (FOT, SOT, FTSVD, STSVD,
FCG, SCG, FTV, STV), so we display results for those

TABLE I. AVERAGE RE±SD AND CC∗

Single dipoles Dual dipoles Triple dipoles
Method RE±SD CC RE±SD CC RE±SD CC

ZOT 0.42±0.11 0.90 0.50±0.13 0.85 0.49±0.12 0.86
FOT 0.28±0.16 0.95 0.43±0.17 0.88 0.40±0.20 0.89
SOT 0.36±0.12 0.94 0.43±0.14 0.89 0.42±0.13 0.90

ZTSVD 0.46±0.13 0.89 0.53±0.14 0.83 0.51±0.13 0.85
FTSVD 0.29±0.17 0.94 0.46±0.19 0.86 0.48±0.22 0.87
STSVD 0.31±0.20 0.92 0.48±0.21 0.84 0.45±0.23 0.85

ZCG 0.42±0.12 0.90 0.52±0.14 0.84 0.50±0.12 0.86
FCG 0.31±0.18 0.93 0.48±0.19 0.85 0.42±0.20 0.88
SCG 0.30±0.15 0.94 0.44±0.18 0.87 0.39±0.17 0.90
NU 0.59±0.15 0.78 0.65±0.15 0.73 0.65±0.17 0.72

MINRES 0.44±0.14 0.88 0.56±0.17 0.80 0.53±0.12 0.84
FTV 0.29±0.16 0.94 0.42±0.16 0.89 0.40±0.18 0.90
STV 0.28±0.15 0.94 0.42±0.17 0.89 0.39±0.18 0.90

∗Averaged over all selected groups of dipole sources

TABLE II. SINGLE DIPOLES IN DIFFERENT DIRECTIONS

radial ~pρ polar angle ~pϕ polar axis ~pz

Method RE±SD CC RE±SD CC RE±SD CC
FOT 0.27±0.16 0.95 0.30±0.18 0.93 0.26±0.15 0.95
SOT 0.32±0.10 0.94 0.35±0.13 0.92 0.30±0.11 0.95

FTSVD 0.29±0.17 0.94 0.31±0.19 0.93 0.27±0.16 0.95
STSVD 0.31±0.20 0.93 0.33±0.22 0.91 0.29±0.20 0.93

FCG 0.31±0.18 0.93 0.33±0.19 0.92 0.29±0.17 0.94
SCG 0.29±0.16 0.94 0.33±0.16 0.93 0.27±0.15 0.95
FTV 0.29±0.11 0.97 0.33±0.19 0.92 0.30±0.16 0.94
STV 0.28±0.13 0.96 0.31±0.18 0.93 0.26±0.15 0.95

TABLE III. SINGLE DIPOLES IN DIFFERENT PLANES

z0=230 mm z1=260 mm z2=270 mm z3=300 mm
Method RE CC RE CC RE CC RE CC

FOT 0.25 0.97 0.17 0.98 0.27 0.95 0.41 0.88
SOT 0.31 0.95 0.24 0.98 0.29 0.95 0.44 0.86

FTSVD 0.26 0.97 0.17 0.98 0.29 0.95 0.44 0.86
STSVD 0.27 0.96 0.17 0.98 0.30 0.94 0.51 0.81

FCG 0.28 0.96 0.18 0.98 0.31 0.94 0.47 0.84
SCG 0.26 0.96 0.18 0.98 0.28 0.95 0.49 0.87
FTV 0.30 0.95 0.20 0.97 0.28 0.95 0.38 0.89
STV 0.29 0.96 0.17 0.98 0.26 0.96 0.38 0.90

methods only in other tables. Best reconstruction results
for all source configurations are on average obtained with
FOT, SOT, FTV and STV methods. FTSTVD and STSVD
methods have good performance only for single dipoles.
FCG and SCG methods under-perform in reconstruction
of dual dipoles.

Table II displays results for single dipoles in different
directions. Results show that dipoles oriented along the
polar angle (tangential to the cage surface) are slightly
worse than results for dipoles oriented along the polar
axis and for radial dipoles (normal to the cage surface).
Table III displays results for single dipoles in different
planes. Results show that the quality of reconstruction
depends on a distance of sources from the cage surface.
The best results are obtained for the plane z1, where the
selected dipoles on the outer circle are ∼27 mm from the
side surface. The worst results are obtained for the plane
z3 where the selected dipoles are ∼10 mm from the side
surface. The selected dipoles on the plane z2 are ∼18 mm
from the side surface. The selected dipoles on the bottom
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(a) (b) (c)

(d) (e) (f)

Fig. 4. a) Cage potential distribution due to single dipole positioned in the center axial plane z3=300 mm, oriented towards the anterior side of
the torso. D563(pϕ ,0,0,300) bellow the map denotes dipole number in the 744-dipole source space from Fig. 1, dipole orientation and coordinates
in cylindrical coordinate system, respectively. Note, that this dipole is located in the same position as the dipole D562 in Fig. 2a. “M” denotes
maximum potential, “m” denotes minimum and ∆ step between iso-potential lines potential for a given map, respectively. Inversely computed cage
potentials using b) FTV and c) STV (first and second order total variation algorithm), d) ZOT, e) FOT and f) SOT (zero, first and second order
Tikhonov regularization methods. Below each reconstruction map, RE and CC values are displayed. Each map is displayed on the anterior and
posterior cage side, where vertical direction corresponds to cage height in the range z ∈ [218,360] mm, and horizontal direction corresponds to polar
angle multiplied with the cage radius at a given height (note, that in Figs. 1-3 torso and cage cross-sections in the zx, zy and xy planes are shown).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. a) Cage potential distribution due to single dipole positioned closed to the cage surface (ρ=400 mm, ϕ=-120◦, dipole D685 in Fig. 2a) in
the axial plane z3=300 mm, oriented towards the cage surface (pρ ). Inversely computed cage potentials using b) FTV, c) STV, d) FTSVD, e) FOT,
f) SOT, g) STSVD h) FCG and i) SCG.

plane z0 are ∼33 mm from the side surface, but they are
only ∼18 mm from the cage bottom surface.

Fig. 4 compares directly simulated cage potentials
with inversely computed potentials using ZOT, FOT, SOT,
FTV, and STV, for a single dipole source near the cage
center. Isopotential map forms a nice symmetrical dipolar
pattern distributed over the whole cage surface in this
case. Results clearly shows that ZOT performs worse than
FOT and SOT, similar conclusion can be reached for other
zero-order methods (ZTSVD and ZCG) as well as for
MINRES and NU methods. The lowest/highest values of
RE/CC were obtained with STV and FOT methods.

Fig. 5 compares directly simulated cage potentials
with inversely computed potentials using FTV, STV, FOT,
SOT, FTSVD, STSVD, FCG, and ZCG, for a single
dipole source near and oriented normal to the cage edge.
In this case, isopotential map has non-zero values in a
rather small region, while FTV method clearly outper-
forms other methods.

Table IV displays results for dual dipoles in different
planes. Like in the case of single dipoles (Table III),
the quality of reconstruction depends on a distance of
sources from the cage surface. Table V displays results
for different orientations of dual dipoles. It seems that
dual dipole orientations have no effect on the quality of
reconstructed results, the anti-parallel orientations gives

TABLE IV. DUAL DIPOLES IN DIFFERENT PLANES

z1=260mm z2=270mm z3=300mm
Method RE±SD CC RE±SD CC RE±SD CC

FOT 0.21±0.081 0.97 0.36±0.09 0.93 0.59±0.08 0.80
SOT 0.29±0.055 0.96 0.37±0.08 0.93 0.56±0.09 0.82

FTSVD 0.23±0.090 0.97 0.39±0.12 0.91 0.62±0.11 0.77
STSVD 0.27±0.093 0.97 0.40±0.12 0.90 0.67±0.10 0.73

FCG 0.23±0.080 0.97 0.41±0.09 0.91 0.66±0.08 0.75
SCG 0.22±0.095 0.97 0.37±0.10 0.92 0.61±0.08 0.79
FTV 0.24±0.092 0.96 0.37±0.11 0.92 0.54±0.13 0.83
STV 0.22±0.083 0.97 0.36±0.10 0.93 0.56±0.10 0.82
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(a) (b) (c)

(d) (e) (f)

Fig. 6. a) Cage potential distribution due to a pair of parallel dipoles, 30.6 mm apart, positioned close to the surface of the cage in the axial plaen
z3 = 300 mm (dipoles D673 and D682 in Fig. 2d). Inversely computed cage potentials using b) SCG, c) SOT, d) STV, e) FOT, and f) FTV.

TABLE V. DIFFERENT ORIENTATIONS OF DUAL DIPOLES

parallel orthogonal anti-parallel
Method RE±SD CC RE±SD CC RE±SD CC

FOT 0.40±0.16 0.90 0.42±0.17 0.89 0.47±0.18 0.85
SOT 0.41±0.12 0.90 0.43±0.12 0.89 0.47±0.18 0.86

FTSVD 0.43±0.18 0.88 0.44±0.18 0.87 0.52±0.22 0.81
STSVD 0.46±0.21 0.85 0.46±0.21 0.85 0.53±0.22 0.80

FCG 0.46±0.18 0.87 0.47±0.18 0.86 0.52±0.21 0.82
SCG 0.42±0.16 0.89 0.43±0.17 0.88 0.49±0.21 0.84
FTV 0.39±0.14 0.91 0.41±0.14 0.90 0.46±0.21 0.85
STV 0.40±0.15 0.90 0.41±0.16 0.90 0.46±0.20 0.86

on average only slightly worse results than parallel and
orthogonal orientations. The same conclusion is also valid
for different combinations of parallel, anti-parallel and
orthogonal dual dipoles.

Fig. 6 compares directly simulated cylindrical-cage
potentials with inversely computed potentials using SCG,
SOT, STV, FOT, and FTV, when the two dipoles were
30.6 mm apart. It is evident that two distinct extrema
were reconstructed only when using SOT (relative error of
0.56) or FTV (0.44); it is interesting that for this specific
example, the Laplacian was a more suitable operator
than the gradient when applying Tikhonov regulariza-
tion, while the opposite was true for the total variation
technique. When taking averages, however, the difference
among regularization techniques in the reconstruction
of two-dipole potential distributions on the cylindrical-
cage surface was small and results were nearly identical
when using, FOT (0.43±0.17), SOT (0.43±0.14), FTV
(0.42±0.17), or STV (0.42±0.17). These observations
point toward the often-neglected notion that qualitative
features of reconstructed maps may show different com-
parative assessment than do quantitative summary statis-
tics (e.g., relative error), and that in some instances,
smaller relative errors may not mean more potent quali-
tative discrimination of localized events.

Table VI displays results for different groups of triple
dipoles. Like in the case of single dipoles (Table III) and
dual (Table IV), the quality of reconstruction depends on
a distance of sources from the cage surface. The worst
results are for Anterior–80 and Sagittal–80 triangles,
where all nodes are close to the cage surface. On the other
hand, we got almost prefect results for triple dipoles on
nodes of Right-42 triangle, which are all quite deep inside
the cage. Dipoles in this configuration are also relatively

TABLE VI. DIFFERENT GROUPS OF TRIPLE DIPOLES

Anterior-60 Right-42 Sagittal-60
Method RE±SD CC RE±SD CC RE±SD CC

FOT 0.43±0.23 0.86 0.08±0.02 0.99 0.30±0.05 0.95
SOT 0.38±0.06 0.92 0.25±0.08 0.96 0.35±0.04 0.94

FTSVD 0.42±0.22 0.87 0.11±0.02 0.99 0.35±0.11 0.93
STSVD 0.41±0.19 0.90 0.09±0.02 0.99 0.34±0.07 0.94

FCG 0.37±0.08 0.93 0.09±0.03 0.99 0.32±0.06 0.95
SCG 0.34±0.08 0.94 0.13±0.05 0.99 0.29±0.04 0.95
FTV 0.38±0.14 0.92 0.10±0.02 0.99 0.34±0.11 0.93
STV 0.37±0.07 0.93 0.08±0.03 0.99 0.32±0.05 0.95

Anterior-80 Right-57 Sagittal-80
Method RE±SD CC RE±SD CC RE±SD CC

FOT 0.60±0.09 0.80 0.54±0.06 0.84 0.46±0.05 0.89
SOT 0.57±0.09 0.81 0.53±0.04 0.85 0.45±0.05 0.89

FTSVD 0.62±0.14 0.77 0.60±0.13 0.78 0.52±0.13 0.84
STSVD 0.63±0.11 0.76 0.64±0.13 0.75 0.60±0.13 0.79

FCG 0.62±0.08 0.77 0.58±0.07 0.81 0.52±0.07 0.85
SCG 0.58±0.08 0.81 0.54±0.07 0.84 0.48±0.06 0.88
FTV 0.57±0.13 0.81 0.54±0.10 0.83 0.44±0.08 0.90
STV 0.59±0.10 0.80 0.52±0.05 0.85 0.44±0.06 0.89

TABLE VII. DIFFERENT ORIENTATIONS OF TRIPLE DIPOLES

normal axial tangential tangential
−~pz,~pρ ,~pρ ~pz,~pz,~pz ~pρ ,−~pz,~pz ~pϕ ,~pϕ ,~pϕ

Method RE CC RE CC RE CC RE CC
FOT 0.42 0.89 0.33 0.93 0.50 0.82 0.35 0.92
SOT 0.43 0.89 0.42 0.90 0.45 0.88 0.39 0.92

FTSVD 0.49 0.83 0.34 0.92 0.55 0.79 0.37 0.92
STSVD 0.50 0.82 0.37 0.91 0.54 0.80 0.40 0.89

FCG 0.46 0.86 0.35 0.92 0.48 0.85 0.39 0.90
SCG 0.42 0.88 0.34 0.93 0.45 0.87 0.36 0.92
FTV 0.31 0.95 0.35 0.92 0.51 0.83 0.42 0.89
STV 0.39 0.90 0.35 0.92 0.46 0.87 0.35 0.92

close to each other (∼42 mm), so they are not likely
to generate a complex potential distribution on the cage
surface.

Table VII displays results for different orientations
of triple dipoles. The worst results are obtained for
tangential (~pρ ,−~pz,~pz) orientation. Fig. 7 shows results
for a such triple dipole source in Anterior–80 (Fig. 3a).
It is interesting to note, that all reconstructed maps have
similar pattern for all presented methods, but none can
focus 3 dipole sources: one on the bottom source plane
(z0), which is not clearly seen in this view of BEM
calculated map (Fig. 7a), and the other two on the left
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. a) Cage potential distribution due to triple dipoles in Anterior–80 triangle positioned closed and oriented tangentially (~pρ ,−~pz,~pz) to the
cage surface. Inversely computed cage potentials using b) FTV, c) STV, d) FTSVD, e) FOT, f) SOT, g) STSVD h) FCG and i) SCG.

Fig. 8. Cage potential distribution due to triple dipoles in Anterior–60
triangle oriented tangentially (~pρ ,−~pz,~pz) to the cage surface.

and right side of the upper source plane(z3). However, one
can clearly deduce from reconstructed maps the presence
of 3 dipoles, but a bit deeper because the dipolar patterns
are more spread. In fact, these reconstructed maps look
more related to the corresponding source in Anterior–60
triangle, where dipoles are closer to each other (60 instead
of 80 mm) and are not so close to the cage surface, see
Fig. 8.

IV. CONCLUSIONS

The main finding of our study is that - for idealized
source models - non-quadratic methods (total variation
algorithms) and first-order and second-order Tikhonov
regularizations outperformed other regularization method-
ologies. This study is a necessary step in comprehen-
sive validation of various regularization methodologies
by comparing them systematically and under controlled
conditions.
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