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Abstract 

Electrocardiographic imaging (ECGI) is a widely used 

method of computing potentials on the epicardium from 

measured or simulated potentials on the torso surface. 

The main challenge of the electrocardiographic imaging 

problem remains its intrinsic ill-posedness, which 

requires use of regularization techniques to smooth out 

the solution; the amount of smoothing that is still 

clinically acceptable is a subject of ongoing research. 

In this study, we systematically compared various 

mathematical techniques in regularizing the ECGI 

problem. For the purposes of the forward computations, 

we employed potentials measured on the cylindrical 

cage placed around the physiological source (canine 

heart) and situated in the electrolytic torso tank. The 

inverse potentials on the cylindrical-cage surface were 

recovered using 14 different regularization techniques. 

We found that non-quadratic methods (total variation 

algorithms) were the most robust and resulted in the 

lowest reconstruction errors.  

 

1 Introduction 

In clinical practice, physician deduces from a limited 

number of electrocardiographic signals, highly complex 

electrical activity of the heart in terms of a simplified, 

i.e., equivalent, source model, which typically consists 

of a single rotating dipole. Such-to a large extent-

qualitative approach to solving the electrocardiographic 

inverse problem still represents the cornerstone of a 

day-to-day diagnosis.  

 During the past 30 years, much research efforts have 

been devoted to exploring and validating the utility of 

electrocardiographic imaging, where equivalent 

potential distribution on the epicardial surface is 

inversely computed from the large number of 

electrocardiograms measured both on the anterior and 

posterior torso surface. It has been widely recognized 

that epicardial potentials directly reflect the underlying 

cardiac activity and could provide an effective means 

for localizing regional cardiac events. 

Electrocardiographic imaging problem, however, is 

inherently ill-posed in a sense that even small errors in 

measurements of potentials on the torso surface result in 

unbounded errors on the epicardial surface. This ill-

posedness has been well studied in electrocardiography 

(e.g, [1-5]) and a plethora of regularization techniques 

have been applied to gauge rapidly oscillating inverse 

solutions. It seems that there is a growing need to better 

structure and unify various regularization methods and 

to that end, to compare individual approaches to 

regularization using the same volume conductor and the 

same cardiac source models. 

 In this paper, we have systematically evaluated the 

performance of 14 different regularization techniques 

using the physiological model of the heart; we have also 

compared boundary element method and finite element 

method, two methodologies which are in 

electrocardiography most often used to describe the 

geometrical and electrical properties of the volume 

conductor, confined by the irregularly-shaped epicardial 

and torso surfaces. 

 

2 Methods 

The equivalent potential distribution on the epicardial 

surface can be found from a known potential 

distribution on the torso surface by solving generalized 

Laplace's equation subjected to Cauchy boundary 

conditions [1-4]. Such a boundary-value problem must 

be in an arbitrarily shaped volume conductor 

approximated on a discretized solution domain as the 

system of linear equations. For the homogeneous and 

isotropic model of the human torso, this can be achieved 

by means of the boundary element method (BEM), 

which relates the potentials at the torso nodes 

(expressed as an m-dimensional vector ΦB) to the 

potentials at the epicardial nodes (expressed as an n-

dimensional vector ΦE), 

     ΦB =  A ΦE  ,                                                        (1) 

 

where A is the transfer coefficient matrix (m x n) and n 

< m. The transfer coefficient matrix depends entirely on 

the geometric integrands which can be calculated 

analytically. Similar formalism as in (1) can be applied 

to the finite element method (FEM), with the difference 

that FEM discretizes the entire volume between the 

torso and epicardial surfaces into tetrahedral elements 

and can also take into account electrical anisotropies of 

the volume conductor.  

The matrix A is ill-conditioned, i.e., its singular 

values are limiting to zero with no particular gap of 
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separation in the singular value spectrum, which yields 

an unstable solution. As mentioned above, the wild 

oscillations of the inverse solution need to be controlled 

by the regularization and the techniques we have used in 

our study are summarized in Table 1. For the sake of 

structuring, we subdivided regularization techniques 

into 3 groups: Tikhonov-based regularizations, iterative 

methods, and non-quadratic regularizations. 

Our experimental protocol consisted of the following 

steps: 
   

    Step 1. For the purposes of modeling the cardiac 

source, we used an isolated heart preparation in which 

one canine heart was retrogradely perfused via the aorta 

by a second, support dog and suspended in the correct 

anatomical position in an electrolytic tank shaped like 

an adolescent thorax. We recorded electric potentials (at 

1 kHz) from the 602-lead cylindrical cage enveloping 

the suspended canine heart and thus serving as the 

“epicardial” surface; geometries of torso and cylindrical 

cage surfaces are shown in Fig. 1. Data were collected 

during a sinus rhythm, with the sample epochs of 4-7 

seconds in duration. 

Step 2. The cylindrical cage potentials were then 

used to calculate torso potentials at 771 nodes using the 

BEM and FEM, respectively (Eq. 1); in both BEM and 

FEM, we assumed the volume conductor to be 

homogeneous and isotropic. Three measurement noise 

levels (20 dB, 40 dB, 60 dB) were added to the torso 

potentials to mimic experimental measurement 

conditions. 

 

Step 3. The 602-lead cylindrical cage potentials were 

reconstructed by the 14 regularization techniques, 

summarized in Table 1, for each noise level and for 

BEM and FEM separately. [5] [1,3]. 

 

Step 4. We expressed the accuracy of the inverse 

solution in terms of the normalized rms (root-mean-

square) error RE = || ΦE
c
 – ΦE

m
 ||2   / || ΦE

m
  ||2 , and the 

correlation coefficient, CC = ΦE
c
 ·ΦE

m
  / ||ΦE

c
||2  ||ΦE

m
 ||2 , 

calculated between measured and inversely computed 

cylindrical-cage potentials ΦE
m 

and ΦE
c
, respectively. 

We also carefully examined qualitative features of 

measured and inversely computed maps (e.g., areas of 

negative potentials, positions of extrema). 

 

     

Table 1. Summary of 14 regularization techniques employed 

in our study. Techniques are subdivided into 3 main 

categories: Tikhonov-based regularizations (Group A), 

iterative methods (Group B), and non-quadratic methods 

(Group C). 

Group Acronym Short description Ref. 

  

ZOT 

 

Zero-order 

Tikhonov    

          

 

[6,7] 

A FOT First-order 

Tikhonov   

     

[4] 

 

 SOT Second-order 

Tikhonov   

     

[7] 

 

  

ZCG 
 

 Zero-order 

Conjugate 

Gradient    

    

[8] 

 FCG First-order 

Conjugate 

Gradient   

        

[8] 

 SCG Second-order 

Conjugate 

Gradient    

        

[8] 

B ZLSQR Zero-order LSQR [9] 

    

 FLSQR First-order LSQR   

    

[9] 

 SLSQR Second-order 

LSQR    

        

[9] 

 TSVD Truncated 

Singular Value 

Decomposition    

        

[10] 

 ν ν-method   

       

[10] 

  

FTV 
 

Total Variation  

    

[4] 

C STV Total Variation 

with Laplacian   

       

[4] 

 LASSO Least Absolute 

Selection and 

Shrinkage 

Operator   
       

[11] 

  

 

 

 

Figure 1.Geometries of the torso and cylindrical cage surfaces. 

Data recorded at 602 leads of the cylindrical cage were used to 

compute torso potentials at 771 nodes using BEM and FEM. 
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3  Results 

Table 2 illustrates reconstruction results during the 

initial phase of the QRS complex, from the Q-onset to 

the peak of the Q-wave, in the presence of a 40-dB 

noise and when using BEM. Even due to the low-signal-

to-noise ratio right after the onset, cylindrical cage 

potentials were reconstructed with the rms normalized 

errors of 0,22-0,36 and correlation coefficients of 0,93-

0,98, depending on the regularization technique used. It 

is evident that the most robust performance throughout 

the sequence was attained by the non-quadratic 

methods, either in the form of the total variation method 

(FTV) or the total variation algorithm with the 

Laplacian in the place of a gradient operator (STV).   

Figure 2 depicts body surface potentials at 5 ms after 

the onset of the Q wave and corresponding measured 

and reconstructed cylindrical-cage potentials; potentials 

were recovered employing FTV and STV, in both cases 

along with BEM.As expected from the literature, body 

surface potentials exhibit initial anterior maximum, 

resulting from the left septal activation of the ventricles. 

Both FTV and STV capture well the qualitative features 

of the cylindrical-cage potentials, with STV providing 

smoother solutions.  

Table 3 summarizes results for standard reference 

points of the sinus rhythm (peaks of P, R, S, and T 

waves), again in the presence of a 40-db noise and when 

using BEM. As in Table 2, both non-quadratic 

regularization techniques (FTV, STV) performed 

consistently better than other 12 methodologies tested. 

There were, however, time instants when there were 

little differences among various regularization 

techniques, and when some Tikhonov regularizations 

(FOT, SOT) and some iterative regularizations (FCG, 

SCG, FLSQR, SLSQR) were on a par with the non-

quadratic techniques. Closer inspection of cylindrical 

cage potentials revealed that during those time instants, 

potential distributions were dipolar (i.e., exhibiting only 

a single maximum and minimum) and had rather simple 

spatial features (e.g., well separated extrema). Even in 

such cases, results suggest that FTV and STV may 

become better than other techniques when the noise 

level is increased from 40 dB to 20 dB.    

Comparison between BEM and FEM showed little 

difference, with BEM performing somewhat better than 

FEM. The difference between methodologies is due to 

lower condition number of matrix A for BEM than for 

FEM (by the factor of 73.1). As noted, this comparison 

 

 

 
Table 2. Root-mean-square (rms) errors for reconstruction results during the initial phase of the QRS complex, from the Q-onset 

to the peak of the Q-wave, in the presence of a 40-dB noise and when using BEM.  Q5 refers to the potential distributions at 5 

ms after the Q-onset; the same applies to Q10 and Q15;  Qpk  refers to the distributions at the peak of the Q-wave. See Table 1 

for explanations of acronyms describing regularization methods.  

 ZOT FOT SOT ZCG FCG SCG ZLSQR FLSQR SLSQR TSVD ν FTV STV LASSO 

Q5 0.32 0.22 0.22 0.32 0.25 0.25 0.32 0.25 0.25 0.33 0.32 0.23 0.22 0.36 

Q10 0.26 0.11 0.10 0.26 0.11 0.11 0.26 0.11 0.11 0.27 0.26 0.15 0.12 0.26 

Q15 0.30 0.18 0.16 0.26 0.19 0.15 0.26 0.19 0.15 0.27 0.27 0.14 0.13 0.27 

Qpk 0.49 0.43 0.39 0.40 0.45 0.38 0.40 0.45 0.38 0.44 0.45 0.31 0.25 0.40 

               

 
Table 3. Root-mean-square (rms) errors for reconstruction results for standard reference points of the sinus rhythm (peaks of P, 

R, S, and T waves)  in the presence of a 40-db noise and when using BEM. See Table 1 for explanations of acronyms describing 

regularization methods. 

 ZOT FOT SOT ZCG FCG SCG ZLSQR FLSQR SLSQR TSVD ν FTV STV LASSO 

P 0.47 0.43 0.42 0.47 0.45 0.45 0.47 0.45 0.45 0.51 0.48 0.37 0.41 0.45 

R 0.45 0.40 0.39 0.40 0.40 0.38 0.40 0.40 0.38 0.42 0.43 0.35 0.33 0.40 

S 0.48 0.42 0.40 0.47 0.45 0.44 0.47 0.45 0.44 0.50 0.49 0.37 0.40 0.45 

T 0.27 0.16 0.16 0.26 0.16 0.16 0.26 0.16 0.16 0.27 0.26 0.17 0.16 0.26 

 

A B

C D

 

Figure 2. Potential distributions at 5 ms after the onset of the 

Q wave. (A) Torso potentials computed from the measured 

cylindrical cage potentials using boundary element method 

(BEM). (B) Measured cylindrical cage potentials. (C) 

Inversely computed cylindrical cage potentials using the totals 

variation method (FTV). (D)  Inversely computed cylindrical 

cage potentials using the totals variation algorithm with the 

Laplacian instead of a gradient operator (STV).. 
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was done for the isotropic and homogeneous volume 

conductor model, while FEM can incorporate more 

complex electric properties of the volume conductor 

than BEM. 

Computational times of individual regularization 

techniques varied, with the iterative methods being far 

the fastest (on average 2 sec per one reconstruction). 

Due to the nature of Tikhonov and non-quadratic 

regularizations, which employ the penalty functions, we 

need to compute a large number (typically 20 to 40) of 

regularized solutions to determine the optimal one. As a 

consequence, it takes on average 8 sec per one 

reconstruction when using Tikhonov and 180 sec when 

using FTV and STV. Among, non-quadratic methods, 

LASSO requires least computational time (less than 2 

sec per reconstruction). 

 

4 Discussions 

The main finding of our study is that non-quadratic 

methods (FTV and STV) have proven more robust to 

the complexity of the spatial patterns and noise in 

reconstructing the cylindrical-cage potentials. This 

conclusion is in agreement with the recent study of 

Gosh and Rudy [4], who noted that TV method (also 

called L1 regularization) may better capture spatial 

pattern of epicardial potentials than techniques, which 

minimize the square of the norm.  

In our study, we compared the performance of 

various regularization techniques using a physiological 

model of the canine heart. This is the initial step of 

comprehensive validation and in our future work we 

will employ simultaneously measured body surface and 

epicardial potentials and experimental protocols, which 

will identify the sites of early activation both during 

pacing and in the models of infarcted hearts. 
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