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Abstract 

In this study, we have systematically assessed various 

regularization techniques which are currently used in solving 

the ill-posed inverse problem of electrocardiography. For  

forward computations, we employed an  analytical model of 

the current dipole source placed within the homogeneous 

isotropic volume conductor consisting of two non-concentric 

spheres. Analytically calculated potentials on the surface of 

the larger of the two spheres (“body surface” potentials) 

served as an input data to recover potentials on the surface of 

the smaller sphere (“epicardial” potentials). In total, we have 

examined performance of 10 different regularization 

techniques in terms of statistical indices (normalized root-

mean-square error and correlation coefficient). We have 

found that the following three regularization methods - first-

order Tikhonov (FOT), first-order conjugate gradient (FCG) 

and first-order least-squares (FLSQR) - most accurately 

reconstructed ”epicardial” potentials, with relative errors 

between 0.07 and 0.16 (and correlation coefficients between 

0,991 and 0,999) depending on a  given dipole source 

location. 

 

1 Introduction 

The inverse solution that employs the potential 

distribution on the epicardial surface as an equivalent 

source model has been widely studied in electro-

cardiography due to its inherent ill-posedness (e.g, [1-

4]). A plethora of regularization techniques have been 

applied to gauge widely oscillating inverse solutions, 

however, to our knowledge, no systematic comparison 

among various methodologies exists to date. Here, we 

employ an analytical model to test the performance of 

10 different regularization techniques in reconstructing 

epicardial potential distributions.  

 

2 Methods 

The equivalent potential distribution on the epicardial 

surface can be found from a known potential 

distribution on the torso surface by solving generalized 

Laplace's equation subjected to Cauchy boundary 

conditions [1-4]. Such a boundary-value problem must 

be in an arbitrarily shaped volume conductor 

approximated on a discretized solution domain as the 

system of linear equations. For the homogeneous and 

isotropic model of the human torso, this can be achieved 

by means of the boundary element method, which 

relates the potentials at the torso nodes (expressed as an 

m-dimensional vector ΦB) to the potentials at the 

epicardial nodes (expressed as an n-dimensional vector 

ΦE), 

 B E=Φ AΦ  (1)   

where A is the transfer coefficient matrix (m x n) and n 

< m. The transfer coefficient matrix depends entirely on 

the geometric integrands which can be calculated 

analytically.  

In principle, the epicardial potential distribution 

could be simply found in the form of a pseudo inverse; 

however, the matrix A is ill-conditioned, i.e., its 

singular values are limiting to zero with particular gap 

of separation in the singular value spectrum, which 

yields an unstable solution. A number of approaches 

have been developed to control the wild oscillations of 

the solution and the ones we were using in our study are 

summarized in Table 1.  

 

Table 1. Summary of regularization methods.  

Abbr. Short description Ref. 

ZOT Zero-order Tikhonov [6,7] 

ZCG Zero-order Conjugate 

Gradient 

[8] 

ZLSQR Zero-order LSQR [9] 

TSVD Truncated Singular Value 

Decomposition 

[10] 

Nu ν-method [10] 

FOT First-order Tikhonov [11] 

FCG First-order Conjugate 

Gradient 

[8] 

FLSQR First-order LSQR [9] 

TV Total Variation [11] 

LASSO Least Absolute Selection 

and Shrinkage Operator 

[12] 

 
The forward solution was computed using a pair of 

homogeneous and isotropic non-concentric spheres to 

model the “thoracic” volume conductor and a single 

current dipole placed inside of the smaller sphere to 

simulate the current source. Within such a simplified 

model, the potentials at an arbitrary point can be 

calculated analytically [5] and for this reason, it is a 

great tool for comparison of various regularization 

techniques under well-controlled conditions. 



 

We approximated the thoracic surface by the 

homogeneous conducting sphere with the unity radius, 

and the epicardial surface by a smaller sphere with a 

radius of 0.5, positioned eccentrically (see Figure 1). 

The body and the epicardial surfaces were tessellated 

using 1280 and 720 triangles (642 and 362 nodes), 

respectively. The tessellation of the body surfaces was 

generated by refinement of icosahedron in four steps 

and the epicardial surface was generated by refinement 

of truncated icosahedron in two steps. We put the single 

dipole in the following 3 locations (see Figure 1):  

(i) at an intermediary depth (D1), 

(ii) deep within both spheres (D2), 

(iii) close to the surfaces of both spheres (D3). 

Using 642-node potentials at the surface of the 

larger sphere (“body surface”) with added 40 dB noise, 

we performed the inverse solutions for 362-node 

“epicardial” potentials (VE) using the 10 regularization 

techniques summarized in Table 1. We expressed the 

accuracy of the inverse solution in terms of the 

normalized rms (root-mean-square) error (RE) and the 

correlation coefficient (CC) between the reconstructed 

and analytically calculated VE0 on the epicardial 

surface: 

 
0 2

0 2

RE
−

=

VE VE

VE
 (2) 

  

 

0

0

VE VE

cov( , )
CC

σ σ

=
VE VE

, (3) 

where cov represents covariance, σVE and σVE0 standard 

deviations of VE and VE0. Results were additionally 

validated by localizing a single dipole source from 

reconstructed 32-leads potential maps using nonlinear 

Levenberg-Marquardt least square algorithm [13].  

3 Results 

Figure 2 shows epicardial potential maps for analytical 

forward solution, zero-order (ZOT) and first-order 

(FOT) Tikhonov regularizations, and total variation 

(TV) regularization. In this specific example, the dipole 

source (D1) was located at an intermediary depth within 

both spheres. We can clearly see that an optimal inverse 

solution was obtained by using FOT. The inverse 

potential map accurately captures all the qualitative 

features of the corresponding forward map with a small 

RE of 0.078 and a high CC of 0.9977. Figures 3 and 4 

show potential maps for the other two dipoles D2 and 

D3, respectively.  

Tables 2 through 4 summarize our results for all 10 

regularization techniques and each of the 3 dipole 

locations. For each reconstructed potential map, we 

found the best fitting single dipole source from which 

we calculated the best fitted map. The following 

evaluation parameters are presented in tables: (RERA, 

REFR, REFA) and (CCRA, CCFR, CCRA), i.e. relative 

errors and correlation coefficients between 

(reconstructed and analytical, fitted and reconstructed, 

fitted and analytical) maps, respectively, and 

localization error ∆r, i.e. distance between the fitted and 

original dipole source location. RERA and CCRA reflect 

the quality of reconstructed map, REFR and CCFR tell 

how the reconstructed map can be fitted by single 

dipole, and REFA, CCFA and ∆r give the ultimate answer 

of how good one can estimate the original dipolar 

source from epicardial maps inversely calculated from 

noisy body surface maps.  

It is evident from the results in Tables 2-4 that first-

order Tikhonov (FOT), first-order conjugate gradient 
 

 
Figure 1. The two-sphere model and 3 cross-sectional views 

with projections of 3 single dipole sources locations. Bullets 

on the inner sphere denote 32-leads used in localization. 

 

 

Figure 2. Potential maps on the epicardial surface for D1. 



(FCG) and first-order least-squares (FLSQR) most 

accurately reconstructed ”epicardial” potentials, i.e. the 

smallest RERA and the highest CCRA, irrespective of 

dipole location.  Results also showed that the worst 

reconstructions were obtained for the source originated 

near both the epicardial and body surfaces (D3). In this 

case, the potential map changed rapidly across the 

surface area near the source, which probably affected 

the accuracy due to a finite dimension of triangles on 

the tessellated surfaces. The average distances between 

triangle nodes were 0.1 with a range from 0.087 to 

0.105 and 0.15 with a range of 0.138 to 0.165 for the 

epicardial and body surface, respectively. Results for 

the deeper source (D2) showed that first order Tikhonov 

regularizations (FOT, FCG and FLSQR) still gave the 

best reconstruction but not so markedly better than 

others, which was the case for the other two dipole 

locations.  The extrema of potential maps from deeper 

sources are much smaller than the extrema of maps 

from sources nearer the surface. The reconstructed maps 

for such sources are therefore more affected by the 

added noise. 

Comparison of fitted and analytically calculated 

maps (REFA and CCFA), and localization error (∆r) in 

Tables 2-4 again showed that the best figures were 

obtained when the maps reconstructed by the first-order 

Tikhonov regularizations were used in the fitting 

procedure (∆r < 0.013 and CCFA > 0.997 for all three 

dipoles). There was only one exception, i.e. for the D2 

dipole we got a perfect localization (∆r <0.0005) and 

correlation (CCFA=0.9999) with the TV method. 

 
 

 

Figure 2. Potential maps on the epicardial surface for D2. 

F

igure 2. Potential maps on the epicardial surface for D3. 

Table 2. Results for the dipole source location D1. 

Method RERA REFR REFA CCRA CCFR CCFA ∆r 

ZOT 0.154 0.142 0.167 0.9885 0.9898 0.9952 0.019 

ZCG 0.149 0.141 0.170 0.9892 0.9898 0.9956 0.018 

ZLSQR 0.150 0.141 0.170 0.9892 0.9898 0.9956 0.018 

TSVD 0.135 0.113 0.159 0.9914 0.9934 0.9972 0.015 

Nu 0.150 0.137 0.169 0.9892 0.9904 0.9953 0.018 

FOT 0.078 0.070 0.071 0.9977 0.9978 0.9990 0.007 

FCG 0.078 0.070 0.071 0.9977 0.9978 0.9989 0.007 

FLSQR 0.078 0.070 0.071 0.9977 0.9978 0.9990 0.007 

TV 0.185 0.144 0.111 0.9832 0.9892 0.9974 0.015 

LASSO 0.148 0.136 0.163 0.9894 0.9907 0.9956 0.018 
 

Table 3. Results for the dipole source location D2. 

Method RERA REFR REFA CCRA CCFR CCFA ∆r 

ZOT 0.154 0.155 0.140 0.9892 0.9881 0.9963 0.025 

ZCG 0.134 0.135 0.128 0.9923 0.9911 0.9981 0.015 

ZLSQR 0.151 0.154 0.138 0.9898 0.9881 0.9971 0.020 

TSVD 0.132 0.125 0.121 0.9926 0.9923 0.9989 0.009 

Nu 0.153 0.153 0.141 0.9894 0.9884 0.9966 0.022 

FOT 0.100 0.094 0.068 0.9966 0.9964 0.9987 0.013 

FCG 0.100 0.099 0.066 0.9966 0.9959 0.9987 0.013 

FLSQR 0.100 0.099 0.066 0.9966 0.9959 0.9987 0.013 

TV 0.167 0.138 0.068 0.9871 0.9940 0.9999 0.000 

LASSO 0.150 0.152 0.139 0.9898 0.9887 0.9965 0.024 
 

Table 4. Results for the dipole source location D3. 

Method RERA REFR REFA CCRA CCFR CCFA ∆r 

ZOT 0.303 0.168 0.246 0.9652 0.9862 0.9724 0.016 

ZCG 0.331 0.160 0.291 0.9589 0.9874 0.9661 0.012 

ZLSQR 0.331 0.160 0.291 0.9588 0.9873 0.9661 0.013 

TSVD 0.302 0.152 0.265 0.9657 0.9884 0.9706 0.042 

Nu 0.312 0.146 0.274 0.9634 0.9894 0.9690 0.019 

FOT 0.150 0.050 0.134 0.9912 0.9988 0.9975 0.010 

FCG 0.151 0.049 0.142 0.9910 0.9989 0.9974 0.010 

FLSQR 0.151 0.049 0.141 0.9910 0.9989 0.9974 0.010 

TV 0.327 0.096 0.364 0.9608 0.9956 0.9462 0.017 

LASSO 0.314 0.182 0.253 0.9627 0.9837 0.9711 0.018 

 



 

4  Discussion 

The main finding of our study is that 3 regularization 

methods performed substantially better than the other 7 

techniques. The main reason for the difference in 

performance is that methods FOT, FCG, and FLSQR all 

use first-order penalty function, which may better 

approximate quickly changing areas of epicardial 

potentials than, for example, the zero-order ones. 

Recently, Gosh and Rudy [4] noted that TV method 

(also called L1 regularization) may better capture spatial 

pattern of epicardial potentials than techniques, which 

minimize the square of the norm. In our study, that is, 

with our model of the source and volume conductor, 

performance of the TV method was consistently inferior 

to the performances of FOT, FCG, and FLSQR 

methods. Future work would be needed to better 

elucidate this point. 
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