ECGI simulations: potential maps of selected 2-dipoles sources

Figures 1 – 36 display potential maps for 2-dipoles sources where one dipole is fixed in $\vec{r_0} = (\rho_i, \varphi_0, z_i)$ and other dipoles are on the outer circle of the current source plane – $\vec{r}_{ik} = (\rho_i, \varphi_0 + k * \Delta \varphi_i, z_i)$, where $k = 1, 2, ..., N_i$ (see, Section 2.2, Table 3 and Fig. 4 in *ECGL simulations.pdf*).

We denote below each map numbers of both dipoles followed by their directions and locations in cylindrical coordinate system.

Axial plane (z = 300), radial distance ($\rho = 40$)

Fig. 1: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Parallel dipoles oriented in the radial direction (\vec{p}_{ρ}) .

Fig. 2: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Parallel dipoles oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 3: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Parallel dipoles in the vertical direction (\vec{p}_z) .

Fig. 4: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others are oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 5: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is in the vertical direction (\vec{p}_z) and others are oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 6: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is oriented in the tangential direction (\vec{p}_{φ}) and others are oriented in the radial direction (\vec{p}_{ρ}) .

Fig. 7: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is oriented in the vertical direction (\vec{p}_z) and others are oriented in the radial direction (\vec{p}_ρ) .

Fig. 8: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others are oriented in the vertical direction (\vec{p}_z) .

Fig. 9: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Orthogonal dipoles, the first one is oriented in the tangential direction (\vec{p}_{φ}) and others are oriented in the vertical direction (\vec{p}_z) .

Fig. 10: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Anti-parallel dipoles, the first one oriented in the radial direction (\vec{p}_{ρ}) and others in the opposite direction $(-\vec{p}_{\rho})$.

Fig. 11: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Anti-parallel dipoles, the first one oriented in the tangential direction (\vec{p}_{φ}) and others in the opposite direction $(-\vec{p}_{\varphi})$.

Fig. 12: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 300 mm and radial distance $\rho = 40$ mm. Anti-parallel dipoles, the first one in the vertical direction (\vec{p}_z)) and others in the opposite direction $(-\vec{p}_z)$.

Axial plane (z = 270), radial distance ($\rho = 30$)

Fig. 13: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Parallel dipoles oriented in the radial direction (\vec{p}_{ρ}) .

Fig. 14: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Parallel dipoles oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 15: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Parallel dipoles oriented in the vertical direction (along the polar axis).

Fig. 16: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others are oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 17: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the vertical direction (\vec{p}_z) and others are oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 18: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the tangential direction (\vec{p}_{φ}) and others are oriented in the radial direction (\vec{p}_{ρ}) .

Fig. 19: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the vertical direction (\vec{p}_z) and others are oriented in the radial direction (\vec{p}_ρ) .

Fig. 20: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others are oriented in the vertical direction (\vec{p}_z) .

Fig. 21: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Orthogonal dipoles, the first one is oriented in the tangential direction (\vec{p}_{φ}) and others are oriented in the vertical direction (\vec{p}_z) .

Axial plane (z = 270), radial distance ($\rho = 30$)

Fig. 22: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Anti-parallel dipoles, the first one oriented in the radial direction $(\vec{p_{\rho}})$ and others int opposite direction $(-\vec{p_{\rho}})$.

Fig. 23: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Anti-parallel dipoles, the first one oriented in the tangential direction (\vec{p}_{φ}) and others in the opposite direction $(-\vec{p}_{\varphi})$.

Fig. 24: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 270 mm and radial distance $\rho = 30$ mm. Anti-parallel dipoles, the first one oriented in the vertical direction (\vec{p}_z) and others in the opposite direction $(-\vec{p}_z)$.

Axial plane (z = 260), radial distance ($\rho = 20$)

Fig. 25: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Parallel dipoles oriented in the radial direction (\vec{p}_{ρ}) .

Fig. 26: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Parallel dipoles oriented in the tangential direction (\vec{p}_{φ}) .

Fig. 27: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Parallel dipoles oriented in the vertical direction (along the polar axis).

Fig. 28: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one in the radial (\vec{p}_{ρ}) and others in the tangential direction (\vec{p}_{φ}) .

Fig. 29: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one in the axial (\vec{p}_z) and others in the tangential direction (\vec{p}_{φ}) .

Fig. 30: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one in the tangential direction (\vec{p}_{φ}) in others in the radial direction (\vec{p}_{φ}) .

Fig. 31: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one in the axial direction (\vec{p}_z) in others in the radial direction (\vec{p}_ρ) .

Fig. 32: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others are oriented in the vertical direction (\vec{p}_z) .

Fig. 33: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Orthogonal dipoles, the first one is oriented in the tangential direction (\vec{p}_{φ}) and others are oriented in the vertical direction (\vec{p}_z) .

Fig. 34: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Anti-parallel dipoles, the first one is oriented in the radial direction (\vec{p}_{ρ}) and others in the opposite direction $(-\vec{p}_{\rho})$.

Fig. 35: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Anti-parallel dipoles, the first one is in the tangential direction (\vec{p}_{φ}) .

Fig. 36: Anterior and posterior views of tank and cage potential distributions for 2-dipoles sources, both positioned in the axial plane z = 260 mm and radial distance $\rho = 20$ mm. Anti-parallel dipoles, the first one is in the vertical direction (\vec{p}_z) and others in the opposite direction $(-\vec{p}_z)$.